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Abstract

This paper presents a novel model to analyze the effects on the investment timing
and social welfare of three feed-in tariffs (FIT) within an oligopolistic market struc-
ture. The FIT contracts are the fixed price, the fixed premium, and the minimum
price guarantee. The model allows the identification of the optimal time to deploy
a renewable energy project and the value of the tariff that maximizes the social
welfare for each FIT design. These optimal tariffs generate the same investment
timing and the same social welfare.
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1 Introduction

Creating incentives for renewable energy generation has been on the agenda of many
governments for over 20 years. This is due to the fact that the investment in many
renewable energy technologies are capital intensive. Renewable energy policies are aimed
at not only accelerating the investment decisions but also increasing the social welfare.
One of the most popular policy schemes for accelerating investment in renewable energy
projects is the feed-in tariff (FIT) program (REN21 2018). A FIT policy has two key
features, namely a contract with a long duration (e.g., 20 years) and remuneration for
the production of renewable energy. Over the years, FIT policies have evolved into many
different price-based incentives.

Couture & Gagnon (2010) propose a classification of FIT policies into two groups. The
first group is called market-independent FITs because the remuneration is independent
from the electricity market price. The FIT schemes in the second group have premium
payments that are added to the electricity market price, thus creating a premium policy
or market-dependent FIT. For many years, market-independent FITs have been offered
in many jurisdictions due to its low-risk nature. On the other hand, market-dependent
FITs may have a higher risk, but they also have embedded options that provide manage-
rial flexibilities and may generate higher revenues. Moreover, they create incentives to
increase production in times of high demand and when the electricity price is high.

This article presents a novel model to analyze FIT contracts from both the market-
independent and market-dependent FIT schemes within an oligopoly. The two market-
dependent FITs are the minimum price guarantee and fixed premium, and the market-
independent FIT is the fixed price. In particular, we combine an asymmetric Stackelberg
model with an analytical real options framework in order to calculate the optimal in-
vestment threshold, the social welfare, and the optimal tariff that maximizes the social
welfare. Based on the model, we analyze the impact of the value of the remuneration,
the duration of the contract and the volatility on the investment threshold and social
welfare.

The results show that the three FITs accelerate investment when the value of the
tariff increases. In addition, increasing the duration of the contract also accelerates
the investment decision for FITs with a fixed premium and minimum price guarantee.
However, fixed-price FITs only accelerate investment when the value of the tariff is above
a threshold. As expected, increasing the market uncertainty postpones the investment
decision.

We also draw the following conclusions from the social welfare analysis. First, all
FIT schemes have the same investment trigger when maximizing the social welfare, and
generate the same social welfare. Second, policies may have a greater impact on the social
welfare when society considers a higher value for the cost of the environmental damage.
Third, the duration of the FIT scheme does not change the maximum attainable welfare
and other parameters, such as market uncertainty and demand elasticity, can produce
non-monotonic effects. Finally, our results suggest that in markets with more inelastic
demand functions, like the energy markets, an optimal designed FIT is relatively smaller,
inducing later investment and smaller increments in the social welfare.

This paper is organized as follows. Section 2 presents the literature review and our
main contributions to literature. Section 3 presents the models for all types of FIT
schemes, namely a minimum price guarantee, fixed premium and fixed price. Sections
5.1 and 5.2 present a comparative statics analysis of the investment threshold and so-
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cial welfare for all types of FIT schemes, respectively. Finally, Section 6 presents the
concluding remarks.

2 Literature review

Our work relates and contributes to literature in three strands of work, namely game
theory models for energy markets, social welfare analysis of renewable energy policies,
and real options applied to renewable energy support schemes. We present each strand
below and state our key contributions.

2.1 Game theory models for energy markets

Several papers have used game theory in energy markets. For instance, Wolfram (1999)
analyzes the market power of generation companies in the British electricity market, and
shows that prices are lower than estimates due to many reasons, such as entry deterrence
and actions from the regulator. Chuang, Wu & Varaiya (2001) formulate a Cournot
oligopoly market for generation expansion planning, and present numerical results to an-
alyze industry expansion, generation investment and trends. Murphy & Smeers (2005)
present an open-loop and closed-loop Cournot model, in which investment and power
dispatch decisions occur simultaneously in the former model and in two stages in the
latter model; in addition, this work compares both models with a perfect competition.
Nanduri, Das & Rocha (2009) utilize a similar single stage Cournot model as Murphy &
Smeers (2005) taking into consideration the network transmission constraints. Twomey
& Neuhoff (2010) examine the case of intermittent generation return under perfect com-
petition, monopoly and oligopoly; the results show that, when different technologies are
used, the market participants benefit differently from the increased price. Moreover,
intermittent technologies benefit less from the market power effect than conventional
technologies.

Some of these works are focused on analyzing policy schemes, such as FITs. For
example, Chang, Hu & Han (2013) use a Stackelberg game to analyze the social welfare
of a fixed-price FIT contract in Taiwan, and the results show that the consumer surplus
always increases but the social welfare may decrease under certain conditions. Devine,
Farrell & Lee (2017) use a Stackelberg model to find an optimal FIT design that efficiently
divides market risk between investors and policymaker. Yi, Xin-gang, Yu-zhuo & Ying
(2019) apply evolutionary game theory to analyze policy decisions that create incentives
for producers to switch from FITs to Renewable Portfolio Standards.

While the aforementioned research works use game theory to model energy markets
and to analyze policy schemes, none of these works focus on how FITs can affect the
timing of investment decisions.

2.2 Social welfare analysis of renewable energy policies

The social welfare analysis has also been used in previous works to compare different
renewable energy policy schemes. For example, Tamás, Shrestha & Zhou (2010) compare
the social welfare of a fixed-price FIT and tradable green certificate schemes. Based on
data from the U.K., the authors conclude that the tradable green certificates generate a
higher social welfare. Yamamoto (2012) analyzes the social welfare for 3 different policy
schemes, namely a fixed-price FIT, net-metering, and net purchase and sale. The FIT
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scheme generates the higher social welfare when the amount of reduction in electricity
consumption is small. Pirnia, Nathwani & Fuller (2011) presents a social welfare analysis
of a fixed-price FIT in Ontario, Canada. The results show that the FIT policy generates
a lower social welfare than a scenario without a FIT policy, because there is a reasonable
amount of wealth transferred from consumers to producers with a FIT policy. Sun &
yan Nie (2015) compare a fixed-price FIT with a renewable portfolio standard policy
and analyze the effect of these policy schemes on the social welfare. The results are
unable determine the support scheme that generates the highest social welfare because
both policies depend on the level of negative externalities, such as pollution damage.
Yamamoto (2017) presents a model to analyze a fixed-price FIT in combination with
capital subsidies with an aim to increase the adoption of residential photovoltaic systems.
This work also analyzes the impact of the combined policy schemes on the social welfare.
The social welfare is maximized when the FIT tariff is equal to the avoided cost per unit
and the capital subsidies are set at a level that can control the number of adopters.

Despite the interesting analyses of the impact of the renewable energy policy schemes
on the social welfare, none of the research works above have taken into consideration
the option to invest and consequently the timing effect of these policy schemes on the
investment decision and the social welfare.

2.3 Real options applied to renewable energy support schemes

Merton (1973) is responsible for laying an important foundation for the option-pricing
methodology and turning it into a popular technique for scholars and practitioners. The
real options approach (Dixit & Pindyck 1994) use the financial option-pricing methodol-
ogy to value investments in real assets. Similar to financial options, a real option is a right
but not an obligation to invest, wait, expand, or abandon a project, while information
changes due to uncertainties. Hence, the corporate finance literature saw the potential of
using the techniques of option pricing to value real investment projects. While the work
from Myers (1977) was the first to coin the term real options, it was Tourinho (1979) that
first used the option-pricing methodology to value the option to extract natural resources
under market uncertainty.

In the corporate world, managers still rely on the popular net present value (NPV)
methodology to value real investments because it is based on a simple rule: ”invest now
if NPV is greater than zero”. However, many scholars (e.g., McDonald & Siegel (1986))
have shown that the NPV methodology yields a lower value of the project because it
does not take into consideration the value of the options (i.e., managerial flexibilities) and
uncertainties. In other words, the NPV methodology does not consider typical behaviors
within the investment decision-making process, such as the option to defer investment
and the option to gather information regarding the evolution of market uncertainty.
Rocha, Salles, Garcia, Sardinha & Teixeira (2007) present a case study of the real options
methodology applied to housing investment. The results show that the methodology can
improve the analysis and improve the decision-making process.

Regarding real options research applied to renewable energy investments, Ceseña,
Mutale & Rivas-Dávalos (2013) present a survey of several research works that use the real
options approach to analyze energy generation projects, with special focus on renewable
energy projects. The survey concludes that many opportunities are still available for
applying the real options methodology. In particular, the survey states that the real
options can be a useful approach for analyzing the effectiveness of renewable energy
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policies.
We thus focus on the real options research that analyzes the effectiveness of renewable

energy policies. Kim & Lee (2012) analyze the number of sign-ups in different market
conditions, with a real options numerical technique. The analysis aims to compare four
FITs, namely a fixed price, a fixed premium, a minimum price guarantee, and a sliding
premium. The numerical analysis, however, reaches the conclusion that a dominant policy
schemes does not exist when considering the number of sign-ups, burden on ratepayers,
and total capacity installed. Abadie & Chamorro (2014) also use a real options numerical
technique in order to analyze investment timing of policy schemes, namely a fixed-price
FIT, a fixed-premium FIT, and renewable obligation certificates. The results show that
the policy schemes can accelerate investment, especially compared to a scenario with
no subsidy available. Boomsma, Meade & Fleten (2012) analyze renewable energy in-
vestments with three support schemes with an analytical approach. The policy schemes
are the fixed-price FIT, a fixed-premium FIT and renewable energy certificate trading.
The results suggest that the renewable energy certificate trading is the best subsidy for
larger projects while fixed-price FIT is well suited for accelerating investment. Barbosa,
Ferrão, Rodrigues & Sardinha (2018) use an analytical approach to analyze a FIT with a
minimum price guarantee under market and policy uncertainty. When comparing the sce-
narios with and without policy uncertainty, the results show that the policy uncertainty
can accelerate investment. Although the aim of our work is also to compare different
FIT policies, we use an analytical real options framework to analyze the support schemes
within an oligopoly, while all the research works above consider a price-taker scenario.
We can thus derive the optimal investment threshold and analyze the impact of the
investment decision on the social welfare.

In summary, to the best of our knowledge, this paper presents the first research work to
employ an analytical real options framework to derive market-independent and market-
dependent FITs within an oligopolistic market. In particular, we derive the optimal
investment threshold of FIT contracts with a finite duration, which is a more realistic
assumption. In addition, we analyze the impact of the FIT schemes on the social welfare
and calculate the optimal tariff in order to draw conclusions to policymakers.

3 Renewable energy producers in oligopolies

Twomey & Neuhoff (2010) state that modeling energy markets as oligopolies is probably
the most appropriate assumption, because many markets are neither a monopoly nor
a perfect competition. We thus analyze different FIT schemes within an oligopolistic
market.

The model has a conventional energy producer that acts as the follower and the leader
is a renewable energy producer. Hence, we analyze the producers within a Stackelberg
game. We use this game because renewable energy producers have contractual priority to
produce and sell energy.1 Chang et al. (2013) also assume the same market structure in
order to analyze the Taiwan market, although the analysis is only focused on a fixed-price
FIT. In our analysis, renewable energy producers (i.e., the leaders) have a contractual

1We also analyzed two other market structures, namely a Cournot and a Stackelberg game assuming
that the conventional energy producer is the leader and the renewable energy producer is the follower.
The results for the three games are qualitatively the same for the timing and the value of the project.
In other words, we draw the same conclusions regarding the timing of the investment and how the value
of the project changes, despite the quantities produced in equilibrium are different.
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right to sell all the production output to the public electricity company (i.e., the follower)
under the FIT contract. In addition, we include important managerial flexibilities with
a real options model, such as information gathering and a waiting option to invest.

Assumption 1 The producers face the linear inverse demand function of the following
form:2

P (Xt, QS) = aXt − bQS (1)

where a > 0, b > 0. Xt denotes the industry’s demand shock at time t observed by all
firms, and QS is the total output produced.

The subscript S denotes the particular scheme we are considering. Regarding S, we
denote the scenario without a FIT schemes (i.e. when the renewable energy producers
do not have a FIT contract) with a subscript W , the scenario when the renewable energy
producer has a minimum price guarantee contract with a subscript M , the scenario when
renewable energy producer has a fixed-premium contract with a subscript P , and the
scenario when renewable energy producer has a fixed-price contract with a subscript F .
We assume that the conventional energy producer is active within the market and the
renewable energy producer is waiting for the optimal time to invest.

Assumption 2 The industry demand shock Xt follows the geometric Brownian motion
process, under the risk neutral measure:

dXt = µXtdt+ σXtdWt (2)

where X0 = X > 0, µ < r is a deterministic risk-neutral drift, r is the risk-free interest
rate, σ > 0 is the volatility, and dWt is the increment of a Wiener process.

Assumption 3 The profit function of the conventional energy producer is:3

ΠcS(Xt) = P (Xt, QS)qcS − CcS (3)

where qcS is the quantity produced. The cost function has the following form CcS = kcqcS
θc.

In addition, the conventional energy producer has no capacity constraint.

Assumption 4 The four different profit functions of the renewable energy producer ΠrS(X)
that we analyze in this article are:

i) Scheme without FIT policy, for which ΠrW (Xt) = P (Xt, QS)qrW − CrW .

ii) Fixed-price scheme, for which ΠrF (Xt) = FqrF − CrF .

iii) Fixed-premium scheme, for which ΠrP (Xt) = (P (Xt, QS) + F )qrP − CrP .

iv) Minimum price guarantee scheme, for which ΠrM(Xt) = max [ΠrF (Xt),ΠrW (Xt)].

where the cost function of the renewable energy producer also has the form CrS = krqrS
θr ,

F is the value of the tariff due to the FIT contract and QS = qcS + qrS. In addition,
qrS 6 Qr, where Qr is the maximum output that can be generated. 4

2Dangl (1999) uses the same inverse demand function to analyze a firm’s installed capacity in a
monopoly with a real options approach.

3We denote the conventional energy producer with a subscript c and the renewable energy producer
with a subscript r.

4We explain each one of these schemes in more details in the subsequent sections.
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We assume that the cost function of the conventional energy is different from the
renewable energy. This is due to the fact that many renewable energy technologies have
a marginal production cost equal to zero, according to the data from the US Energy
Information Administration (EIA 2017). Hence kr << kc, where kr is almost zero. In
addition, we use the following assumptions in our model for the cost functions: (i) a linear
cost function for the renewable energy producer, where θr = 1, because it is reasonable to
assume that the marginal cost is constant for the renewable energy, and (ii) a quadratic
cost function for the conventional energy producer, where θc = 2, because it is reasonable
to assume that conventional energy has an increasing marginal cost. Twomey & Neuhoff
(2010) and Langary, Sadati & Ranjbar (2014) also use a quadratic cost function in their
models, which is the usual approximation for conventional energy cost.5

We also assume that renewable energy producer has a maximum output (Qr) that is
limited by the capacity installed. For example, it is commonly assumed that wind farms
produce at around 30% of the total capacity.

The remainder of this section presents the value of the active project and the value
of the option to invest, which is used to derive the optimal investment thresholds in the
following sections of this paper. We also present the social welfare analysis at the end of
this section in order to compare the different FIT schemes and analyze the benefits the
schemes may generate to the economy’s overall sense of well-being.

3.1 The value of firms

In our setting the conventional energy producer is already active in the market and,
therefore, its value is given by the revenue stream:

VcS(X) =

∫ +∞

0

ΠcS(Xt)e
−rtdt (4)

The renewable energy producer can be either active or idle, waiting for the optimal
investment timing. Let VrS(X(t)) be the value of the active project. Upon investment,
the value of the project is equal to the expected present value of the revenue stream. In
addition, the value of the project with a FIT contract has a finite duration T . After time
T , the renewable energy producer sells the energy for the market price P . Therefore, the
value of the project VrS(X) upon investment is given by:6

VrS(X) =

∫ T

0

ΠrS(Xt)e
−rtdt+

∫ +∞

T

ΠrW (Xt)e
−rtdt (5)

A renewable energy producer has a waiting option which is held until the stochas-
tic revenue flow reaches a sufficiently high level at which it is optimal to exercise the
investment option. The option to invest is exercised by paying a sunk cost I, which is
the investment cost per unit of capacity. Let FrS(X) be the value of the investment op-
tion. Applying Itô’s Lemma (Dixit & Pindyck 1994) leads us to the Ordinary Differential
Equation (ODE):

0.5σ2 X2 ∂
2FrS(X)

∂X2
+ µ X

∂FrS(X)

∂X
− rFrS(X) = 0 (6)

5We can also extend the model for other industries, and assume different values for θ.
6We explain in more details how to calculate the value of the project in each one of the schemes in

the subsequent sections.
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The general solution to this ODE is given by:

FrS(X) = A1X
β1 + A2X

β2 (7)

where A1 and A2 are constants determined by economic boundary conditions. In addition,
β1 (β2) is the positive (negative) root of the following quadratic equation:

1

2
σ2β(β − 1) + βµ− r = 0 (8)

Hence,

β1 =
1

2
− µ

σ2
+

((
−1

2
+

µ

σ2

)2

+
2r

σ2

) 1
2

> 1,

β2 =
1

2
− µ

σ2
−

((
−1

2
+

µ

σ2

)2

+
2r

σ2

) 1
2

< 0.

Assuming that the producer has a perpetual option to invest for a sunk cost I per
unit of capacity Qr, we find the value of the investment option FrS(X) and the optimal
investment trigger X∗rS. As the function FrS(X) must be continuous and differentiable in
all its domain, we apply the value matching and smooth pasting conditions. In addition,
as FrS(0) = 0 (which implies that A2 = 0), the value of the option to invest is given by:

FrS(X) =


A1X

β1 X < X∗rS

VcS(X)− IQr X > X∗rS

(9)

whereA1 andX∗rS are such thatA1X
∗
rS
β1 = VrS(X∗rS)−IQr and β1A1X

∗
rS
β1−1 = ∂VrS(X)

∂X
|X=X∗

rS

(i.e., the value matching and smooth pasting conditions).

3.2 Social welfare

In order to compare the FIT schemes, we calculate the social welfare WS for three market
scenarios where a policymaker offers a fixed-price FIT, fixed-premium FIT and a FIT with
a minimum price guarantee. The aim is to compare these different policy schemes and
how they can impact the economic welfare of a population. We also calculate the social
welfare for a market scenario where a policymaker does not offer a FIT scheme (i.e.,
a free-market condition), which serves as a baseline for the policy schemes. The social
welfare includes the consumers’ surplus, the value of the project of the energy producers,
an environmental damage, and the public expenditure due to the FIT schemes. Hence,
the social welfare WS(X) is given by:

WS(X) = CSS(X) + VcS(X) + FrS(X)− EDS(X)− PES(X) (10)

where the first term represents the consumers’ surplus, which is equal to b
2
[QS(X)]2 for

the linear demand function; the second and third terms are the value of the firm that
generates energy from conventional resources and the value of the option of the firm that
generates energy from renewable resources respectively, VcS(X)+FrS(X) (i.e., the produc-
ers’ surplus); the fourth term is the environmental damage function, which is assumed to
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be equal to KG[qcS(Xt)]
2, where KG is the increment in marginal environmental damage

due to the green house gas (GHG) emission; and the last term is the public expenditure
due to the FIT schemes.

We consider that the value of public expenditure PES(X) can assume three different
values, depending on the FIT policy. First, the cost of the fixed-price FIT scheme is equal
to the difference between the value of the tariff F and the market price P times qrF (Xt).
The intuition behind this is that the regulator pays F per unit of energy to the producer
and sells it for P to the market. Note that the fixed-price FIT scheme can generate a
positive cash flow if the market price P is greater than the tariff F . Second, the cost of
the fixed-premium FIT is equal to F times the energy produced qrP (Xt). Third, the cost
of the FIT with a minimum price guarantee is equal to F − P when X is below a given
threshold and zero otherwise, for every unit of energy.

In addition, we assume that the environmental damage function is convex. This
function calculates the environmental damage when energy is produced by conventional
resources (i.e., qcS(Xt)) such as petroleum or coal. This function was also used by Chang
et al. (2013).

The remainder of this section presents the results for the market scenarios and schemes
that we address along the paper.

3.3 Conventional energy producer monopoly

We first calculate the social welfare for a monopoly, because we have to take into account
that the market has only one conventional producer before the investment occurs. When
the renewable energy producer exercises the investment option, the market will then
become a duopoly (i.e.: the monopoly ends when X hits X∗rS).

Hence, in this section, we analyze a scenario where there is only one conventional firm
that sells energy for the market price and the renewable energy producer is still waiting
to start the investment. We first derive the profit function of the conventional firm to
find the quantity that maximizes the profit.

The following proposition characterizes the industry outputs given that the market is
a monopoly:7

Proposition 1 The strategy of the conventional firm is to produce qcY , which is the
quantity that maximizes the profit:

qcY (Xt) =
a

2(b+ kc)
Xt (11)

Thus, qcY generates the following profit:

ΠcY (Xt) =
a2

4(b+ kc)
Xt

2 (12)

Note that the profit function in Equation (12) is proportional to X2. Hence, it is
straightforward to prove by Itô’s Lemma that the profit follows the following stochastic
process:

dΠcY t = (2µ+ σ2)ΠcY tdt+ 2σΠcY dWt (13)

Therefore, the appropriate discounted rate to find the value of the project is r − α,
where α = 2µ+ σ2.

7We denote a scenario with a monopoly with a subscript Y
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Proposition 2 The social welfare value WY for a monopoly is:

WY (X) = CSY (X) + VcY (X)− EDY (X) (14)

where CSY (X) is the consumers’ surplus:

CSY (X) =

∫ +∞

0

b

2
[qcY (Xt)]

2e−rtdt =
b

2

qcY
2

(r − α)
=

a2b

8(b+ kc)2
X2

(r − α)
= h22

X2

r − α
(15)

the value of the conventional firm VcY (X) is:

VcY (X) =

∫ +∞

0

ΠcY (Xt)e
−rtdt =

a2

4(b+ kc)

X2

(r − α)
= h32

X2

r − α
(16)

and, the environmental damage EDY (X) is:

EDY (X) =

∫ +∞

0

KG[qcY (Xt)]
2e−rtdt = KG

a2

4(b+ kc)2
X2

(r − α)
= KGh42

X2

r − α
(17)

3.4 Conventional and renewable energy producers duopoly

In this section, we analyze a scenario where the renewable energy producer has already
entered the market, and thus derive the Stackelberg leadership game to find the market
equilibrium.

In order to model the optimal output, we may find two market equilibria. In the
first equilibrium the renewable energy firm produces at the maximum output Qr, and in
the second equilibrium the renewable energy firm produces below Qr. For the sake of
simplicity, we assume that the renewable energy firm produces always at full capacity.
On the one hand, for very small marginal production costs the second equilibrium is
almost unattainable, having a negligible impact in the results.8 On the other hand, the
regulator may require that renewable energy firms produce at full capacity, for example
for environmental reasons.

Assuming that the renewable energy producer produces always at full capacity, the
output of both producers is invariant with the FIT Scheme. Being a function only of these
quantities, the revenue flow of the conventional producer, the instantaneous consumers’
surplus and the instantaneous environmental damage are also invariant with the FIT
Scheme.

The following proposition presents the quantities of both the renewable energy firm
and conventional energy firm in a Stackelberg equilibrium:

Proposition 3 The optimal strategy for the conventional energy firm is to produce qcS(X),
which maximizes the profit:

qcS(Xt) = − bQr

2(b+ kc)
+

a

2(b+ kc)
Xt, S ∈ {W,F, P,M} (18)

Hence, the profit of the conventional energy firm is equal to ΠcS(X):

ΠcS(Xt) =
b2Q2

r

4(b+ kc)
− abQr

2(b+ kc)
Xt +

a2

4(b+ kc)
X2
t = h30 + h31Xt + h32X

2
t (19)

8Barbosa (2019) provides the same results as in this article allowing for the two equilibria. Addition-
ally, Twomey & Neuhoff (2010) considers the renewable energy cost to be equal to zero.
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In order to calculate the social welfare WS(X), we present the values of the in-
stantaneous consumers’ surplus b

2
[QS(Xt)]

2 and the term of the environmental damage

[qcS(Xt)]
2:

b

2
[QS(Xt)]

2 =
(b2 + 4kc(b+ kc)) bQ

2
r

8(b+ kc)2
+

(b+ 2kc)abQr

4(b+ kc)2
Xt +

a2b

8(b+ kc)2
X2
t

= h20 + h21X + h22X
2 (20)

[qcS(Xt)]
2 =

b2Q2
r

4(b+ kc)2
− abQr

2(b+ kc)2
Xt +

a2

4(b+ kc)2
X2
t = h40 + h41Xt + h42X

2
t (21)

The instantaneous revenue flow of the renewable energy producer depends on the FIT
scheme, which in turn determines its investment timing. Therefore, the FIT schemes
have different welfare effects but only as a result of the different entry timings of the
renewable energy producer.

The following propositions calculate the terms of the social welfare, namely the con-
sumers’ surplus, the producers’ surplus, and the environmental damage. We take into
account that the market is a monopoly before investment occurs.

Proposition 4 The consumers’ surplus CSS(X) is given by:

CSS(X,X∗rS) = CSY (X)−


(CSY (X∗rS)− CSSD(X∗rS))

(
X

X∗rS

)β1
for X < X∗rS

CSY (X)− CSSD(X) for X > X∗rS

(22)

where CSY (X) is the consumers’ surplus of a monopoly (Equation (15)) and CSSD(X)
is the consumers’ surplus in a duopoly. We calculate CSSD(X) as following:

CSSD(X) =

∫ +∞

0

b

2
[QS(Xt)]

2e−rtdt = h20
1

r
+ h21

X

r − µ
+ h22

X2

r − α
(23)

For X < X∗rS, note that the consumers’ surplus CSS(X) is equal to the consumers’
surplus of a monopoly that changes to a duopoly when X hits X∗rS. When X > X∗rS,
the consumers’ surplus CSS(X) is equal to the consumers’ surplus in a duopoly. The
intuition behind the consumers’ surplus CSS(X) in Equation (22) is that the market is a
monopoly before the renewable energy firm exercises the option to invest. Consequently,
the monopoly terminates when X = X∗rS and thus the market becomes a duopoly.

Next, we follow the same steps as above in order to calculate the value of the conven-
tional firm VcS, which is a component of the producers’ surplus.

Proposition 5 The value of the conventional firm VcS(X) is:

VcS(X,X∗rS) = VcY (X)−


(VcY (X∗rS)− VcSD(X∗rS))

(
X

X∗rS

)β1
for X < X∗rS

VcY (X)− VcSD(X) for X > X∗rS

(24)

where VcY (X) is the value of the conventional firm in a monopoly, which has been calcu-
lated in (16). In addition, the value of the conventional firm VcSD(X) in a duopoly is the
following:

VcSD(X) =

∫ +∞

0

ΠcS(Xt)e
−rtdt = h30

1

r
+ h31

X

r − µ
+ h32

X2

r − α
(25)
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For X < X∗rS, note that the value of the conventional firm VcW (X) (i.e., Equation
(24)) is equal to the value of the conventional firm in a perpetual monopoly minus the
loss in value when the renewable energy firm enters the market. When X > X∗rS, the
value of the conventional firm is equal to the value of the firm in a duopoly.

Next, we calculate the value of the environmental damage EDS:

Proposition 6 The environmental damage EDS(X) is:

EDS(X,X∗rS) = EDY (X)−


(EDY (X∗rS)− EDSD(X∗rS))

(
X

X∗rS

)β1
for X < X∗rS

EDY (X)− EDSD(X) for X > X∗rS
(26)

where EDY (X) is the environmental damage in a monopoly (i.e., Equation (17)) and
EDSD(X) is the environmental damage in a duopoly, which is given by:

EDSD(X) =

∫ +∞

0

KG[qcS(Xt)]
2e−rtdt = KG

(
h40

1

r
+ h41

X

r − µ
+ h42

X2

r − α

)
(27)

Note that, similarly to the consumers’ surplus and the value of the conventional firm,
the first branch of Equation (26) includes the value of the environmental damage when
the renewable energy firm has the option to invest. Additionally, the second branch is
equal to the environmental damage in a duopoly.

3.4.1 Free-market scenario

Now, we calculate the value of the project in a free-market scenario. Let VrW (X) denote
the value of the project when the policymaker does not offer a FIT contract.

Proposition 7 The renewable energy firm, producing qr = Qr, has profit of:

ΠrW (Xt) =

(
−kr −

b(b+ 2kc)Qr

2(b+ kc)

)
Qr +

a(b+ 2kc)Qr

2(b+ kc)
Xt = h10 + h11Xt (28)

The value of the renewable energy project without a FIT contract is given by:

VrW (X) =

∫ +∞

0

ΠrW (Xt)e
−rtdt = h10

1

r
+ h11

X

r − µ
(29)

Now, we follow the steps in Section 3.1 in order to obtain the value of the option to
invest and value of the investment trigger for a scenario without a FIT scheme:

Proposition 8 The value of the option to invest is given by:

FrW (X) =


(VrW (X∗rW )− IQr)

(
X

X∗rW

)β1
for X < X∗rW

VrW (X)− IQr for X > X∗rW

(30)

where the investment threshold X∗rW is:

X∗rW =
β1

β1 − 1

(
r − µ
h11

)(
IQr −

h10
r

)
(31)

11



Equation (32) presents the value of the social welfare WW (X) when the renewable
energy producer does not have a FIT contract:

WW (X) = CSW (X) + VcW (X) + FrW (X)− EDW (X) (32)

The social welfare in Equation (32) has three main components, namely the con-
sumers’ surplus, the producers’ surplus and the environmental damage. Given that
no FIT is offered, there is no pubic expenditure. The consumers’ surplus CSW (X) =
CSS(X,X∗rW ) is in Equation (22). The producers’ surplus is equal to the value conven-
tional firm and the option to invest (i.e., VcW (X) = VcS(X,X∗rW ) + FrW (X)), where
VcW (X) is in Equation (24) and FrW (X) is in Equation (30). The environmental damage
EDW (X) = EDS(X,X∗rW ) is in Equation (26).

3.4.2 Fixed-price FIT

In this scenario, the renewable energy producer has a fixed-price FIT contract with a
finite duration, where the firm receives F for a period of time T . Among all FIT designs,
the fixed-price FIT is the most widely used FIT scheme around the world. For instance,
fixed-price FIT policies have been offered in Germany, France, Portugal, Canada, and
many other countries.9

Following the same steps of the previous section, let VrF (X) be the value of the project
when the renewable energy producer has a fixed-price contract with a finite duration T .
After time T , the renewable energy producer sells the energy for the market price P .

Proposition 9 The value of the project at the time of the investment is:

VrF (X) =

∫ T

0

(F − kr)Qre
−rtdt+

∫ +∞

T

ΠrW (Xt)e
−rtdt

=
(F − kr)Qr

r

(
1− e−rT

)
+ h10

1

r
e−rT + h11

X

r − µ
e−(r−µ)T (33)

Note that the first integral is the profit when the producer has a fixed-price contract.
The second integral is the profit after the FIT contract has expired.

Following the steps in Section 3.1, we have the following proposition:

Proposition 10 The value of the option to invest is given by:

FrF (X) =


(VrF (X∗rF )− IQr)

(
X

X∗rF

)β1
for X < X∗rF

VrF (X)− IQr for X > X∗rF

(34)

where the investment threshold X∗rF is:

X∗rF =
β1

β1 − 1

(
r − µ

h11e−(r−µ)T

)(
IQr −

(F − kr)Qr

(
1− e−rT

)
+ h10e

−rT

r

)
(35)

9Under fixed-price FIT the renewable energy firm always produces the maximum output Qr, because
the maximum output Qr maximizes the profit of a producer with a fixed-price FIT. In other words, even
if we relax the assumption, a renewable energy firm with a fixed-price FIT always produces as much as
possible in order to maximize its profit.
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When the renewable energy firm receives a fixed amount F and produces the maximum
output Qr, the following proposition states the value of the public expenditure:

Proposition 11 When the renewable energy firm produces qrF = Qr and receives a fixed-
price FIT, the instantaneous public expenditure is:

(F −P )Qr =

(
b(b+ 2kc)Qr

2(b+ kc)
+ F

)
Qr−

a(b+ 2kc)Qr

2(b+ kc)
X = (F −kr)Qr−h10−h11X (36)

The value of the public expenditure of a fixed-price FIT contract at the time of the
investment is:

EF (X) =

∫ T

0

((F − kr)Qr − h10 − h11X)e−rtdt

= ((F − kr)Qr − h10)
(1− e−rT )

r
− h11

X

r − µ
(1− e−(r−µ)T ) (37)

Note that the public expenditure has the same duration T of the FIT contract.
In addition, the present value of the public expenditure of a fixed-price FIT contract

is:

PEF (X) =


EF (X∗rF )

(
X

X∗rF

)β1
for X < X∗rF

EF (X) for X > X∗rF

(38)

Hence, the value of the social welfare is:

WF (X) = CSF (X) + VcF (X) + FrF (X)− EDF (X)− PEF (X) (39)

where CSF (X) = CSS(X,X∗rF ) is in Equation (22), VcF (X) = VcS(X,X∗rF ) is in Equation
(24), FrF (X) is in Equation (34), EDF (X) = EDS(X,X∗rF ) is in Equation (26), and
PEF (X) is in Equation (38).

3.4.3 Fixed-premium FIT

In this section, we analyze a fixed-premium contract within an oligopolistic market. In
this policy, the firm receives a fixed bonus F over the market price. Fixed-premium FITs
have been offered in countries such as Spain, Czech Republic, and the Netherlands.

Following the same steps of the previous sections, we derive the value of the project
VrP (X) when the firm has a fixed-premium contract with a finite duration.10

Proposition 12 The renewable energy firm, producing qr = Qr, has profit the following
profit when receiving a fixed-premium FIT:

ΠrF (Xt) =

(
F − kr −

b(b+ 2kc)Qr

2(b+ kc)

)
Qr +

a(b+ 2kc)Qr

2(b+ kc)
Xt = FQr + h10 + h11Xt (40)

10It is possible to show that, even if allowed to produce below the maximum output, the renewable
energy firm with a fixed-premium contract always produces the maximum output, if Qr is not very large
(Barbosa 2019).
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The value of the project at the time of the investment is:

VrP (X) =

∫ T

0

ΠrF (Xt)e
−rtdt+

∫ +∞

T

ΠrW (Xt)e
−rtdt

=
FQr

r

(
1− e−rT

)
+ h10

1

r
+ h11

X

r − µ
(41)

Following the steps in Section 3.1, we have the following Propositions:

Proposition 13 The value of the option to invest is given by:

FrP (X) =


(VrP (X∗rP )− IQr)

(
X

X∗rP

)β1
for X < X∗rP

VrP (X)− IQr for X > X∗rP

(42)

where the investment threshold X∗rP is:

X∗rP =
β1

β1 − 1

(
r − µ
h11

)(
IQr −

FQr

(
1− e−rT

)
+ h10

r

)
(43)

The next proposition presents the public expenditure of having a scheme with a fixed-
premium FIT, PEP (X). Recall that the instantaneous public expenditure is equal to
FQr.

Proposition 14 The public expenditure PEP (X) is given by:

PEP (X) =


FQr

(
1− e−rT

r

)(
X

X∗rP

)β1
for X < X∗rP

FQr

(
1− e−rT

r

)
for X > X∗rP

(44)

Therefore, the value of the social welfare with a fixed-premium policy is the following:

WP (X) = CSP (X) + VcP (X) + FrP (X)− EDP (X)− PEP (X) (45)

where CSP (X) = CSS(X,X∗rP ) is in Equation (22), VcP (X) = VcS(X,X∗rP ) is in Equation
(24), FrP (X) is in Equation (42), EDP (X) = EDS(X,X∗rP ) is in Equation (26), and
PEP (X) is in Equation (44).

3.4.4 FIT with a minimum price guarantee

A FIT with a minimum price guarantee is a price-floor regime, whereby a producer
receives a fixed amount F per unit of energy when the profit flow for selling energy to
the market is lower than the profit generated with the price floor. On the other hand,
the producer sells energy for the market price when the profit flow for selling energy to
the market is above the profit from the price floor. Netherlands, Ireland and Switzerland
are examples of jurisdictions that have used variations of the price-floor regime in a FIT
contract.
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The renewable energy producer maximizes its profit by choosing an appropriate quan-
tity that depends on Xt. In other words, an Xt above a value leads to the equilibrium
where producers sells energy at the market price. An Xt below this same value takes the
producer to the equilibrium where the producer receives a fixed amount F .11

Proposition 15 When renewable energy firm receives the fixed amount F , it has the
following profit flow:

ΠrM1 = (F − kr)Qr, (46)

and when selling at the market price, it has the following profit:

ΠrM2(Xt) = ΠrW (Xt) (47)

where ΠrW (Xt) is given by Equation (28).

Now, let us denote XF the value of the demand shock where the profit generated by
the fixed amount (i.e., Equation (46)) is equal to the profit when the firm sells energy to
the market and produces the maximum output (i.e., Equation (47)). Hence, the value of
XF is given by:

XF =
b

a
Qr +

2(b+ kc)

a(b+ 2kc)
F =

(
b

a
+

F

h11

)
Qr (48)

Now, we build on the work from Barbosa et al. (2018) in order to find the value of
project, the value of the option, and the investment trigger.

Proposition 16 The value of the project with a finite minimum price guarantee contract
at the time of the investment is given by:12

VrM(X) = V P
M (X)− S(X) +

∫ +∞

T

ΠrW (Xt)e
−rtdt

= V P
M (X)− S(X) + h10

1

r
e−rT + h11

X

r − µ
e−(r−µ)T (49)

where V P
M is the value of the project with a perpetual minimum price guarantee contract,

and S(X) is a forward-start perpetual minimum price guarantee.
The value of the project with a perpetual minimum price guarantee is:

V P
M (X) =


G11X

β1 + (F − kr)Qr
1

r
for X < XF

H12X
β2 + h10

1

r
+ h11

X

r − µ
for X > XF

(50)

where G11 and H12 are calculated by equating the values and the derivatives in the two
branches of Equation (50), which yields:

G11 =
XF
−β1

β1 − β2

(
β2((F − kr)Qr − h10)

r
− (β2 − 1)h11XF

r − µ

)
(51)

H12 =
XF
−β2

β1 − β2

(
β1((F − kr)Qr − h10)

r
− (β1 − 1)h11XF

r − µ

)
(52)

11It is possible to show that, allowing for the firm to produce below maximum output, the firm will
produce always at maximum output when facing a demand with low elasticity (Barbosa 2019).

12For more details see the work from Barbosa et al. (2018).
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The forward-start perpetual minimum price guarantee S(X) is given by:

S(X) = G11X
β1(1−N(dβ1)) + (F − kr)Qr

1

r
e−rT (1−N(d0))

+H12X
β2N(dβ2) + h10

1

r
e−rTN(d0) + h11

X

r − µ
e−(r−µ)TN(d1) (53)

where, N(.) is the cumulative normal integral and

dβ =

ln
X

XF

+

(
µ+ σ2

(
β − 1

2

))
T

σ
√
T

(54)

Following the steps in Section 3.1, we now calculate the value of the option to invest
and the investment trigger.

Proposition 17 The value of the option to invest is given by:

FrM(X) =


(VrM(X∗rM)− IQr)

(
X

X∗rM

)β1
for X < X∗rM

VrM(X)− IQr for X > X∗rM

(55)

where the investment threshold X∗rM for the first branch of Equation (50) (i.e.: X∗rM <
XF ) is the solution of the following equation that must be solved numerically:

(β1 − β2)H12X
∗β2
rMN(dβ2)− (β1 − 1)h11

X∗rM
r − µ

e−(r−µ)T (1−N(d1))

+ β1

(
IQr −

(F − kr)Qr + ((F − kr)Qr − h10)e−rT (1−N(d0))

r

)
= 0 (56)

and the investment threshold X∗rM for the second branch of Equation (50) (i.e.: X∗rM >
XF ) is the solution of the following equation that must be solved numerically:

(β1 − β2)H12X
∗β2
rM (1−N(dβ2)) + (β1 − 1)h11

X∗rM
r − µ

(
1 + e−(r−µ)T (1−N(d1))

)
− β1

(
IQr −

h10 − ((F − kr)Qr − h10)e−rT (1−N(d0))

r

)
= 0 (57)

Now we calculate the public expenditure of the FIT with a minimum price guarantee,
PEM(X). Note that the public expenditure when X < XF is the same as the public
expenditure with a fixed amount (i.e., Equation (36)). When X > XF , the public
expenditure is zero because the producer sells energy to the market.

Proposition 18 The public expenditure of a minimum price guarantee policy is given
by:

PEM(X) =


EM(X∗rM)

(
X

X∗rM

)β1
for X < X∗rM

EM(X) for X > X∗rM

(58)

16



EM(X) = PEP
M(X)− SM(X) (59)

where PEP
M(X) is a perpetual public expenditure of a minimum price guarantee policy,

and SM(X) is a forward-start public expenditure of a minimum price guarantee policy
that starts at time T . Therefore, we have the followings:

PEP
M(X) =


G21X

β1 + ((F − kr)Qr − h10)
1

r
− h11

X

r − µ
for X < XF

H22X
β2 for X > XF

(60)

G11 and H12 are calculated by equating the values and the derivatives in the two
branches of Equation (60), which yields:

G21 =
XF
−β1

β1 − β2

(
β2 ((F − kr)Qr − h10)

r
− (β2 − 1)h11XF

r − µ

)
= G11 (61)

H22 =
XF
−β2

β1 − β2

(
β1 ((F − kr)Qr − h10)

r
− (β1 − 1)h11XF

r − µ

)
= H12 (62)

Following the steps in Barbosa et al. (2018), SM(X), is given by:

SM(X) = G11X
β1(1−N(dβ1)) +H12X

β2N(dβ2)

+ ((F − kr)Qr − h10)
1

r
e−rT (1−N(d0))− h11

X

r − µ
e−(r−µ)TN(d1) (63)

where N(.) is given in Equation (54).

Hence, the value of the social welfare with a finite minimum price guarantee scheme
is given by:

WM(X) = CSM(X) + VcM(X) + FrM(X)− EDM(X)− PEM(X) (64)

where CSM(X) = CSS(X,X∗rM) is in Equation (22), VcM(X) = VcS(X,X∗rM) is in Equa-
tion (24), FrM(X) is in Equation (55), EDM(X) = EDS(X,X∗rM) is in Equation (26),
and PEM(X) is in Equation (58).

4 Designing optimal FIT schemes

From a policymaking perspective, an optimal FIT scheme should be designed to maximize
the incremental welfare. In our setting, where the renewable energy producer always
produces at maximum capacity, the effect of the FIT schemes on the social welfare is
driven only by the investment timing, whereby a new firm enters the market and changes
the market equilibrium, increasing competition. Therefore, it is expected that a scheme
than induces investment timing to be that which maximizes the welfare value, is an
optimally designed scheme.

The following proposition presents the welfare increment produced by the introduction
of a FIT scheme with a given tariff F and duration T .
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Proposition 19 The incremental welfare value of introducing a FIT scheme S ∈ {F, P,M}
is:

∆WS(X) = WS(X)−WW (X)

=



(
h0

1

r
+ h1

X∗rS
r − µ

− IQr

)(
X

X∗rS

)β1
−
(
h0

1

r
+ h1

X∗rW
r − µ

− IQr

)(
X

X∗rW

)β1
for X < X∗rS < X∗rW

0 for X > X∗rS

(65)

where

h0 = h10 + h20 + h30 −KGh40

h1 = h11 + h21 + h31 −KGh41

Proof. See Appendix.
The constants h0 and h1 aggregate the incremental impact of a FIT scheme on (i)

the renewable energy producer surplus and public expenditure (h10 and h11), (ii) the
consumer surplus (h20 and h21), (iii) the conventional energy producer surplus (h30 and
h41), (iv) and the environmental damage (h40 and h31). By introducing a FIT scheme,
a Government transfers value directly, through cash payments, to the renewable energy
producer, and affects indirectly, through the investment timing, the surplus of the conven-
tional energy producer, the consumers’ surplus and the environmental damage. Because
the firms’ output is independent of the FIT scheme, the incremental welfare is null after
the renewable energy producer enters the market (X > X∗rS). Before that, the incremen-
tal welfare is the difference between the incremental welfare arising from competition due
the different entry timings of the new firm when offered a FIT incentive (X∗rS) and in its
absence (X∗rW ).

An optimal feed-in tariff, F ∗S , maximizes the welfare value, solving the following opti-
mization problem:13

W ∗
S(X) = max

F
∆WS(X) = max

F

(
h0

1

r
+ h1

X∗rS
r − µ

− IQr

)(
X

X∗rS

)β1
(66)

Given that in Equation (65) only X∗rS is a function of F , this optimization problem
is equivalent to:

W ∗
S(X) = max

X∗
rS

∆WS(X) = max
X∗
rS

(
h0

1

r
+ h1

X∗rS
r − µ

− IQr

)(
X

X∗rS

)β1
(67)

which is exactly the same optimization problem that a central planner would solve to find
the optimal investment timing of the renewable energy producer. The solution of (67) is
stated in the following proposition:

Proposition 20 An optimally designed FIT scheme induces the renewable energy pro-
ducer to invest when X hits the following trigger:

X∗rS =
β1

β1 − 1

(
r − µ
h1

)(
IQr −

h0
r

)
= X∗r (68)

13Notice that in Equation (65) h0, h1, and X∗
rW are not a function of F .
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which is the same for all schemes and produces the following maximum incremental wel-
fare:

W ∗
S(X) =

1

β1 − 1

(
IQr −

h0
r

)(
X

X∗r

)β1
− β1(h1 − h11) + h11

(β1 − 1)h11

(
IQr −

h0
r

)(
X

X∗rW

)β1
(69)

In order to induce the optimal behavior of the renewable energy producer, the FITs
for the fixed and premium schemes are:

F ∗F =
erT

Qr(1− erT )

(
e−(r−µ)T

h11
h1

(
h0
r
− IQr

)
− e−rT h10

r
− IQr

)
+ kr (70)

F ∗P =
erT

Qr(1− erT )

(
h11
h1

(
h0
r
− IQr

)
− h10

r
− IQr

)
(71)

and the optimal FIT for the floor scheme is found solving numerically for F equations
(56) or (57) substituting X∗r for X∗rM .

An important implication of Proposition 20 is that the duration of the FIT scheme (T )
does not change the maximum attainable welfare (both X∗r and X∗rM are not a function
of T ), determining only the optimal FIT that should be offered. Other parameters can
produce non-monotonic effects, since they impact both the timing of investment (X∗r and
X∗rM) and the welfare payoffs (e.g. through h0, h1, and h11).

5 Comparative statics

In this section, we present a comparative statics analysis of the main drivers of the option
to invest and its threshold and the welfare value for the three FIT schemes, namely fixed
price, fixed premium and minimum price guarantee. The base-case parameter values are
presented in Table 1.

Accordingly with the assumptions in the previous sections, we set θc = 2. Hence,
the marginal cost of the conventional firm increases as the production increases (i.e., in-
creasing the quantity of energy produced makes the marginal cost more expensive). The
reason for this assumption is that resources to produce energy become more expensive
as the conventional firm produces more. For example, Twomey & Neuhoff (2010) also
assume that the cost function is quadratic for a conventional firm. We assume kr much
smaller than kc and θr = 1, because the marginal cost of many renewable energy tech-
nologies are close to zero. The investments cost is the cost of a 2MW (e 3, 000, 000) wind
turbine per MWh of output, with a maximum output of 30% of the capacity installed.14

In addition, we assume a = 80, and b is set to produce reasonable output quantities for
the two producers.15

5.1 Investment timing under different FIT schemes

Figure 1 shows that the investment triggers for the three FIT policies decrease as the tariff
F increases. In other words, the decision to invest accelerates when the tariff F increases.

14The yearly output is 5,256 MWh.
15For b = 3 and Xt = 1, when the renewable energy producer output is 0.6 MW, the conventional

energy producer output is 7.75 MW
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Table 1: Base-case parameters used to calculate the threshold

kc 2
kr 0.01
θc 2
θr 1
a 80
b 3
F e 25 / MWh
T 15 years
I e 570.776 / MWh
Qr 0.6 MW
r 0.05
µ 0.00
σ 0.2
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Figure 1: Investment triggers as a function of F

The trigger of the price-floor regime (i.e., FIT with a minimum price guarantee) converges
to the trigger of the fixed-premium regime when the tariff F goes to zero. In particular,
both triggers have the same value when F = 0, because the producer sells energy for
the market price in both cases. In contrast, as the value of the tariff F increases, a
producer with a price-floor regime is more likely to sell energy for the tariff F instead of
the market price. Hence, the investment threshold of the price-floor regime converges to
the fixed-price FIT. In addition, the triggers of the price-floor regime and fixed-premium
FIT are always below the trigger without FIT scheme. However, the trigger with a
fixed-price scheme is only below the trigger in a free-market scenario after the tariff F is
approximately e 29/MWh. Hence, policymakers should only offer tariffs for fixed-price
policy above this value. This happens because for values of the tariff below this amount
it is more profitable to sell energy for the market price than to receive the fixed-price
tariff. However, a producer with a fixed-price FIT contract does not have this option.

Figure 2a shows that the triggers of fixed-premium FIT and price-floor regime de-
crease as the duration of the contract T increases. Producers with a fixed-premium FIT
accelerate investment because they receive the bonus over the market price for a longer
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(a) F = e 25 / MWh
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Figure 2: Investment triggers as a function of T

duration and thus increases the value of project. Producers with a price-floor regime
accelerate investment because they have a guarantee for a longer period of time which re-
duces the risk of the investment. However, the behavior of the fixed-price trigger depends
on the value of the tariff F . In Figure 2a, we observe the fixed-price trigger increases as T
increases when the tariff has a low value (i.e., F = e 25 / MWh). In contrast, Figure 2b
shows that the fixed-price trigger decreases as T increases for higher values of the tariff
(i.e., e 50 / MWh). Hence, policymakers should not offer low values of the tariff within
a fixed-price FIT contract, because it will postpone investment.
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Figure 3: Investment triggers as a function of σ

Figure 3 illustrates that the investment thresholds increase as σ increases. These
results are consistent with the real options theory, whereby the effect of uncertainty
accelerates the decision to invest. Next, we analyze a comparative statics analysis of the
social welfare for the three FIT policies.

5.2 The impact of FIT schemes on social welfare

In this section, we present a comparative statics analysis, whereby we analyze the dif-
ference between the social welfare with a FIT policy and a social welfare without a FIT
scheme. The social welfare without a FIT scheme assumes that the market has a renew-
able energy producer without a FIT contract. The aim is to analyze the inclusion of a
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FIT policy in a market without any support scheme and how the FIT policy increases or
decrease the social welfare. We use the same base-case parameters in Table 1 together
with X = 0.25. In addition, we analyze a scenario where the environmental damage is
low (i.e.: KG = 5) and another scenario where the environmental damage is high (i.e.:
KG = 10).
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(b) KG = 10

Figure 4: Incremental social welfare as a function of the tariff F for different values of
the environmental damage

Figure 4a presents the incremental social welfare as a function of the tariff F , i.e. the
difference between the social welfare of each FIT scheme and the free-market scenario.
The marginal environmental damage KG is set equal to 5. Note that the values of the
incremental social welfare are either slightly positive or negative. A negative incremental
social welfare means that the social welfare of a free-market scenario is higher than the
social welfare of a scenario with a FIT scheme. When incremental social welfare is equal
to zero, we have a scenario where it is indifferent for a policymaker to offer a FIT scheme
or to let renewable energy producers sell energy to the market. A low KG applies to a
jurisdiction where the population is not very concerned with the environmental damage
of the the green house gas (GHG) emission.

In Figure 4b, we observe a different pattern, because the marginal environmental
damage KG is set equal to 10. A higher KG means that the population is more concerned
regarding the green house gas (GHG) emission, which is due to the conventional firm’s
energy production. The plots in Figure 4b present a maximum point for all three FIT
schemes, where all maximum points are clearly positive. The values of the tariff that
generate the maximum values of the incremental social welfare are approximately e 22 /
MWh for the fixed-premium FIT, e 40 for the fixed-price FIT, and e 41 for the price-floor
regime. The values of the tariff that maximize the incremental social welfare represent
a scenario where the inclusion of FIT policies generate a higher social welfare than the
social welfare of the market without an support schemes. In addition, these values are
the recommended tariffs for policymakers, because they maximize the social welfare of
the population.

5.3 Optimal FIT schemes

Figure 5a presents the plots of the optimal FIT values as a function of the volatility. We
can see that the optimal FIT values for the fixed price and fixed premium do not change
when the volatility increases. The reason for this observation is that these optimal tariffs
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do not depend on the volatility, as shown in Equations 70 and 71. However, the same does
not occur with the price floor, whereby the optimal tariff now depends on the volatility.
In other words, the optimal FIT for the price floor scheme is found solving equations (56)
or (57) numerically, and these equations depend on the volatility. The economic intuition
behind this effect is that the policymaker always pays the same tariff for the fixed price
and fixed premium schemes regardless of the market price movement. However, this does
not happen with the minimum price guarantee because a policymaker can either pay F
or the producer sells energy for the market price.

Figure 5b presents the plot of the investment trigger for the optimal designed FIT,
which is the same for all the three schemes and compares it with the free-market scenario
trigger. We observe that the trigger increases as the volatility value increases, which is
consistent with the real options theory. In other words, investors postpone the invest-
ment decision when the volatility increases. Additionally, optimal FITs induce earlier
investments when introduced. In Figure 5c, the plot shows the incremental welfare of the
optimally designed FITs as a function of the volatility. The non-monotonic effect sug-
gested before is show in the plot: the social welfare initially increases with the volatility
and then starts decreasing.
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Figure 5: Maximum social welfare for different volatilities, σ

Figure 6a shows the optimal FIT values for different demand elasticities. Note that b
values close to zero represents a market condition with a highly elastic demand, while large
b values correspond to inelastic demand. A market with inelastic products, such as energy,
represents a condition where consumers are not very sensitive to prices; hence, even if
price increases, the consumption does not significantly change. Therefore, producers can
increase price without affecting the demand. In contrast, for highly elastic products,
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consumers are very sensitive to prices. The results show that the curve is non-monotonic
because for very small values of b the optimal FIT increases and rapidly starts decreasing.
Hence, as the market presents a more inelastic demand, the optimal tariffs decrease. Note
that the optimal market dependent FITs (premium and minimum price guarantee) are
more sensitive to demand elasticity than the market independent scheme (fixed price).

In Figure 6b, we can see that the investment trigger is higher for an inelastic demand.
Moreover, the investment trigger has a non-monotonic effect and the lowest trigger is more
towards the elastic products, but cannot be completely elastic. A similar non-monotonic
effect occurs for the social welfare (Figure 6c).

These results suggest that in markets with more inelastic demand functions, such as
the energy markets, the social welfare is maximized with smaller values of the FIT tariffs,
leading to later investment timings and smaller increments in the social welfare.
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Figure 6: Maximum social welfare for different demand elasticities, b.

As previously suggested, the environmental damage is an important driver of the social
welfare effects of the introducing of a FIT scheme. Figure 7 confirms that suggestion,
showing that, when an optimal FIT tariff is used, a higher environmental induces earlier
investments (7b) and higher social welfare increments (Figure 7c).

6 Concluding remarks

This work analyzes three different FIT schemes within an oligopolistic market structure,
namely the fixed price, the fixed premium and the minimum price guarantee policies.
In this analysis, we use an asymmetric Stackelberg model and a real options valuation
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Figure 7: Maximum social welfare for different environmental damages, KG

model. Not only does our model value investments in renewable energy projects from
the perspective of a private investor but also a policymaking perspective. In particular,
our model provides interesting insights to FIT design, where it can be used to provide
recommendations for market design, including how to create appropriate investment in-
centives. In particular, the model presents the investment threshold and the value of the
tariff F that maximize the social welfare in the different types of FIT designs.

The key results of this paper are twofold. First, we identify the optimal time to deploy
a renewable energy project. Second, we compare the three FIT contracts concerning the
investment threshold and social welfare, to shed some light on the effectiveness of the
three policy schemes. Besides, we analyze how the value and duration of a minimum
price guarantee, a fixed premium and a fixed price affect the investment threshold and
the social welfare.

The results show that the investment decision is accelerated for the three FIT schemes
when the value of the tariff F increases. Also, the investment thresholds of the fixed-
premium FIT and the price-floor regime always decrease as the duration of the contract
T increases. However, the investment threshold of the fixed-price scheme decreases as T
increases for only higher values of the tariff. Hence, policymakers should not offer values
of the tariff within a fixed-price FIT contract that postpone investment.

Regarding the social welfare, lower values of marginal environmental damage create
a scenario where the FIT policies reduce or have a null impact at the most on the social
welfare. This result may explain why many jurisdictions are reducing or even eliminating
many FIT programs because lower values of the marginal environmental damage mean
that society is not very concerned with the effects on the environment. In contrast,
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increasing the cost of environmental damage leads to positive effects of FIT policies on
the social welfare.

Regarding the optimal FIT design, that maximizes the social welfare, a key result is
that the optimal tariffs generate the same investment trigger and, therefore, the same
increment in the social welfare. The duration of the FIT scheme does not change the
maximum attainable welfare. We show that other parameters, such as market uncertainty
and demand elasticity can produce non-monotonic effects. Finally, our results suggest
that in markets with more inelastic demand functions, like the energy markets, an optimal
designed FIT is smaller, inducing later investment and smaller increments in the social
welfare.
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Proof of Proposition 19.
We first calculate the incremental social welfare of a fixed-price FIT scheme ∆WF (X) =

WS(X)−WW (X).
From Equation (39), the social welfare with a fixed-price scheme is:

WF (X) = CSF (X) + VcF (X) + FrF (X)− EDF (X)− PEF (X) (72)

Substituting Equation (22) for CSF (X), Equation (24) for VcF (X), Equation (34) for
FrF (X), Equation (26) for EDF (X), and Equation (38) for PEF (X) in Equation (72)
yields:

For X < X∗rF
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Simplifying Equation (73) yields:
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In addition, from Equation (32), the social welfare with a free-market scenario is:

WW (X) = CSW (X) + VcW (X) + FrW (X)− EDW (X) (75)

Substituting Equation (22) for CSW (X), Equation (24) for VcW (X), Equation (30)
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for FrW (X) and Equation (26) for EDW (X) = EDS(X,X∗rW ) yields:
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Simplifying Equation (76) yields:
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Subtracting Equation (74) from Equation (77) yields:
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Substituting h0 for h10 + h20 + h30−KGh40 and h1 for h11 + h21 + h31−KGh41 yields:
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For X > X∗rF
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Following the same steps
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Simplifying Equation (80) yields:
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In addition, the social welfare with a free-market scenario for X > X∗rF is:
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It is straightforward to see that subtracting Equation (81) from Equation (82) yields
zero. Hence, the incremental welfare for the fixed-price scheme is:

∆WF (X) = WF (X)−WW (X)

=



(
h0

1

r
+ h1

X∗rF
r − µ

− IQr

)(
X

X∗rF

)β1
−
(
h0

1

r
+ h1

X∗rW
r − µ

− IQr

)(
X

X∗rW

)β1
for X < X∗rF

0 for X > X∗rF

(83)

where

h0 = h10 + h20 + h30 −KGh40

h1 = h11 + h21 + h31 −KGh41
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Following the same steps to find the incremental welfares for the fixed premium and
minimum price guarantee schemes, it is straightforward to see that the only difference
among all FITs schemes is the investment timing.

Hence, the incremental welfare value of introducing a FIT scheme S ∈ {F, P,M} is:

∆WS(X) = WS(X)−WW (X)

=
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where

h0 = h10 + h20 + h30 −KGh40

h1 = h11 + h21 + h31 −KGh41
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